Reg. No: SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) **B.Tech II Year I Semester Supplementary Examinations June 2019 RANDOM SIGNAL AND STOCHASTIC PROCESS** (Electronics & Communication Engineering) Time: 3 hours Max. Marks: 60 (Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I **a** How the probability is the numerical measure of uncertainty? 1 5M **b** Define independent events? If A & B are independent events then prove that A & \overline{B} , \overline{A} 7M & B and $\overline{A} \& \overline{B}$ are also independent events. OR **a** State all the properties of Cumulative Distribution Function (CDF). 2 4M**b** Pair of dice tossed, random variable 'X' is defined to show difference face values 8M turned up. Find and plot CDF of random variable 'X'. UNIT-II a The joint PDF between random variables X & Y is given by 3 $f_{XY}(x,y) = \begin{cases} \frac{5}{16} x^2 y; \ 0 < y < x < 2\\ 0 \ ; Else \ Where \end{cases}$ 5M Find Marginal Density Function of random variable X and Y. **b** The joint CDF between random variables 'X' & 'Y' is given by $F_{XY}(x,y) = \begin{cases} (1-e^{-x^2})(1-e^{-y^2}); x > 0 \text{ and } y > 0\\ 0 ; Else Where \end{cases}$ 7M i) Find joint PDF. ii) Find P{1 < X < 2 and 1 < Y < 2}. OR **a** Write the expression and explain the importance of following statistical parameters. 4 6M i) Mean value ii) Co-Variance iii) Correlation Coefficient **b** Two Gaussian random variables $X_1 \& X_2$ have zero means, variance 4 & 1 respectively and covariance is 3 are transformed to new random variables $Y_1 \& Y_2$ such that $Y_1 =$ X_1 - X_2 and Y_2 = $3X_1$ + $4X_2$. Find Co-variance between Y_1 & Y_2 . 6M **UNIT-III** 5 **a** Discuss about following random process. 4Mi) Stationary ii) Deterministic **b** A random process $X(t) = A \cos (\omega_0 t + \varphi)$, where ' φ ' is random variable which is uniformly distributed between 0 to $\frac{\pi}{2}$. Find following statistical parameters of random 8M process i) Mean value ii) Mean square value iii) Correlation and iv) Is X(t) WSS

Q.P. Code: 16EC404

random process.

OR

6 a State any 'THREE' properties of Cross Correlation Function (CCF).6Mb ACF of random process X(t) is given by $R_{XX}(\tau) = (4\tau^2 + 100)/(\tau^2 + 4)$.6MFind i) Average valueii) AC Poweriii) Total power of random process

UNIT-IV

- 7 **a** Derive the expression for Average total Power P_{XX} of random process X(t).
 - **b** A random process $X(t) = A \cos(\omega_0 t + \varphi)$, where ' φ ' is random variable which is Uniformly distributed between 0 to $\frac{\pi}{2}$. Find Average total Power P_{XX} of random 6M process X(t)?

OR

		OK	
8	a	State and prove any 'THREE' properties of PSD.	6M
	b	Find Cross Correlation Function of random process X(t) whose Cross PSD is given	
		$S_{XY}(\omega) = \begin{cases} a + j \frac{b\omega}{W_0} ; -W_0 < \omega < W_0 \end{cases}$	6M
		0 ; Else Where	
		UNIT-V	
9	a	Output of any LTI System is equal to linear convolution between input and impulse	4M
		response of the system. Justify.	4111
	b	Find mean square response and PSD response of LTI system.	8M
OR			
10	a	Explain about following random process.	ом
		i) Band pass ii) Band limited iii) Narrow Band pass	<i>9</i> 1 V 1

b Find rms band width of random process whose PSD is given $S_{XX}(\omega) = \frac{2}{(1+\frac{\omega^2}{4})^2}$. 3M

*** END ***

6M